General Physics Curriculum Map

Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/Weeks /Days)
NYS Key Idea 3: Critical thinking skills are used in the solution of mathematical problems. M3.1 Apply algebraic and geometric concepts and skills to the solution of problems. • explain the physical relevance of properties of a graphical representation of real world data, e.g., slope, intercepts, area under the curve Key Idea 2:	Unit 1: Mathematical Tools 1. Perform calculations with SI units and scientific notation 2. Understand the need for accuracy and precisions when making measurements and reporting data 3. Display and evaluate data using graphs as well as linearizing data and create mathematical models	1. Perform calculations with SI units and scientific notation 2. Understand the need for accuracy and precisions when making measurements and reporting data 3. Display and evaluate data using graphs as well as linearizing data and create mathematical models	School Issued Chromebooks Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	Labs: • Life of Pi Summative: • Test • Quizzes Formative: • Math Pre-test • Bellringers • Homework	First two weeks of September

Models are simplified representations of objects, structures, or systems used in analysis, explanation, interpretation, or design.			
2.2 Collect information about the behavior of a system and use modeling tools to represent the			
operation of the system. • use observations of the behavior of a system to develop a model			
2.3 Find and use mathematical models that behave in the same manner as the processes under			

investigation. • represent the behavior of real-world			
physical and			
mathematical			
Models			
Key Idea 1:			
Engineering			
design is an			
iterative process			
involving			
modeling and			
(finding			
the best solution			
within given			
constraints) which			
is used to			
develop			
technological			
solutions to			
problems within			
given constraints.			
(Note: The			
design process			
could apply to			
simnle			
investigations to			
long-term			

NYS Key Idea 5: Energy and matter interact through forces that	Unit 2: Kinematics: 1D Motion in the x direction 1. Represent	 Represent scalar versus vector quantities Describing the difference 	School Issued Chromebooks Teacher generated google slides notes	Labs: • Scalar v. Vector • Roll with it • Waterfall • We all Fall Down	Late September to mid October
rrougn forces that result in changes in motion. 5.1 Explain and predict different patterns of motion of objects (e.g., linear and uniform circular motion, velocity and acceleration, momentum and inertia). i. construct and interpret graphs of position, velocity, or acceleration versus time iii. determine the acceleration due to gravity near	 Represent scalar versus vector quantities Describing the difference between distance and displacement Study average & instantaneous velocity Study average & constant acceleration Describe motion with motion diagrams and incorporating coordinate systems. Use graphs and equations to solve problems involving moving objects Draw motion 	between distance and displacement 3. Study average & instantaneous velocity 4. Study average & constant acceleration 5. Describe motion with motion diagrams and incorporating coordinate systems. 6. Use graphs and equations to solve problems involving moving objects 7. Draw motion graphs, and motion maps and interpret motion graphs using slope and area.	Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	 We all Fail Down Summative: Test Quizzes Kinematics google slides project Formative: Bellringers Homework 	
the surface of Earth	graphs, and motion maps and				

5.1a Measured quantities can be classified as either vector or scalar.	interpret motion graphs using slope and area. -In the y direction 1. Calculate free fall acceleration				
5.1d An object in linear motion may travel with a constant velocity* or with acceleration*. (Note: Testing of acceleration will be limited to cases in which acceleration is constant.					
5.1 iii. determine the acceleration due to gravity near the surface of Earth					
NYS 5.1 vii. sketch the theoretical	Unit 3: Projectile Motion-2D motion 1. Describe	SWBAT: sketch the	School Issued Chromebook	Labs: • Shoot For Your Grade	Mid to Late October

path of a projectile Performance indicators:	projectile motion 2. Predict the pathway of a projectile	theoretical path of a projectile	Teacher generated google slides notes Calculator	 Rocket Science Summative: Test
5.1e An object in free fall accelerates due to the force of gravity.* Friction and other forces cause the actual motion of a falling object to deviate from its theoretical motion. (Note: Initial velocities of objects in free fall may be in	3. Determine height and range of projectile 4. Observe and show how horizontal and vertical velocities are independent of each other	Explain the optimal angle to launch a projectile that will result in the greatest horizontal and vertical distances	School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	 Quizzes Projectile Motion Posters Formative: Bellringers Homework
5.1f The path of a projectile is the result of the simultaneous effect of the horizontal and vertical components of its motion; these components				

act independently. 5.1g A projectile's time of flight is dependent upon the vertical component of its motion.					
NYS 5.1a Measured quantities can be classified as either vector or scalar. 5.1i According to Newton's First Law, the inertia of an object is directly proportional to its mass. An object remains at rest or moves with constant velocity, unless acted upon by an unbalanced	Unit 4: DYNAMICS AND STATICS Vectors 1. What is the difference between vector and scalar 2. Graphical vector representation 3. Graphical vector addition 4. Mathematical vector addition Forces 1. Free body diagrams: define and show forces acting on an object 2. Determine the	HS-PS2-1. Analyze data to support the claim that Newton's Second Law of Motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration	School Issued Chromebook Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	Labs: • Foot Friction • Weight v. Mass Summative: • Test • Quizzes • Newton's Laws of Motion Video Project Formative: • Bellringers • Homework	November to mid December

force 5.1k According to Newton's Second Law, an unbalanced	normal force on the object 3. Recognize and calculate static and kinetic friction		
force causes a mass to accelerate*.			
5.1q According to Newton's Third Law, forces occur in action/reaction pairs. When one object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction.			
Performance indicators:			
5.1j When the net			

force on a system is zero, the system is in equilibrium. 5.10 Kinetic friction* is a force that opposes motion.					
NYS 5.1t Gravitational forces are only attractive, whereas electrical and magnetic forces can be attractive or repulsive. 5.1u The inverse square law applies to electrical* and gravitational* fields produced by point sources.	Unit 5: Universal Law of Gravitation 1. Use the masses and distances between objects to calculate the gravitationa I force 2. Explain what gravity is and what factors affect it	HS-PS2-4. Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.	School Issued Chromebook Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology	Labs: • The Circle of Life Summative: • Test • Quizzes Formative: • Bellringers • Homework	Mid December to Mid January

			Castle Learning		
NYS 5.1p The impulse* imparted to an object causes a change in its momentum*. 5.1q According to Newton's Third Law, forces occur in action/reaction pairs. When one object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1r Momentum is conserved in a closed system.* (Note: Testing will be limited to momentum in one dimension.)	Unit 6: Momentum & Impulse 1. Students will be able to understand Momentum and Its Conservation according to Newton's 3rd law 2. Describe Momentum & impulse and apply them to the interactions of objects 3. Elastic versus inelastic collisions	HS-PS2-3. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* HS-PS2-2. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. [School Issued Chromebook Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	Labs: • The Explosion Lab • Impulse Lab Summative: • Test • Quizzes • Impulse Egg Project Formative: • Bellringers • Homework	Mid January to Mid February
NYS Key Idea 4: Energy exists in	Unit 7: Energy 1. Differentiating	HS-PS3-1. Create a computational model to calculate	School Issued Chromebook	Labs: Hooke's Law Pendulum	Mid February to end of March

many forms, and when these forms change energy is conserved. 4.1 Observe and describe transmission of various forms of energy. i. describe and explain the exchange among potential energy, kinetic energy, and internal energy for simple mechanical systems, such as a pendulum, a roller coaster, a	between potential and kinetic energy 3. Calculating the PE and KE at various points~ Determine how energy is used to do work 4. Explain that the total amount of energy in a closed system never changes 5. Energy form changes and conservation on energy 6. Work energy theorem 7. Calculating work and power 8. Polating powor	the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. HS-PS3-2. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of	Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	 Dropper Popper Who is the Most Powerful? Summative: Test:Created using previous years regents questions taken from problem attic/castle learning Quizzes:Created using previous years regents questions taken from problem attic/castle learning Rube Goldberg Project: Students will design and build a rube goldberg machine outside of the classroom
spring, a freely falling object	8. Relating power to energy	relative position of particles (objects).		Formative: Bellringers
v. observe and explain energy conversions in real -world situations vi. recognize and	9. Elastic potential energy calculation	HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another		• Homework

describe	form of energy		
conversions			
among different			
real or			
hypothetical			
devices such as a			
motor, a generator,			
battery			
,			
4.1a All energy			
governed by the			
law of			
conservation of			
energy.			
4.1b Energy may			
be converted among			
mechanical,			
electromagnetic,			
nuclear, and			
forms			
4.1c Potential			
energy is the energy an object			
possesses by			
virtue of its			
position or			

condition. Types of potential energy include gravitational* and elastic*.			
4.1d Kinetic energy* is the energy an object possesses by virtue of its motion.			
4.1g When work* is done on or by a system, there is a change in the total energy* of the system.			
4.1h Work done against friction results in an increase in the internal energy of the system.			
4.1i Power* is the time-rate			

at which work is done or energy is expended.					
NYS 4.1j Energy may be stored in electric* or magnetic fields. This energy may be transferred through conductors or space and may be converted to other forms of energy. 4.1k Moving electric charges produce magnetic fields. The relative motion between a conductor and a magnetic field may produce a potential difference in the	Unit 8: Electrostatics 1. The difference between static and standard electricity 2. Measuring static electricity 3. Coulomb's Law 4. Conservation on charge 5. Drawing electrical fields through graphical and mathematical representation	HS-PS2-4. Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects	School Issued Chromebook Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	Labs: • Static Electricity • Shocking Pie Pan Summative: • Test • Quizzes Formative: • Bellringers • Homework	April

conductor.					
NYS 4.1 xv. map the magnetic field of a permanent magnet, indicating the direction of the field between the N (north- seeking) and S (south- seeking) poles	Unit 9: Magnetism 1. Relating magnetism and electricity 2. Permanent vs. temporary 3. Drawing magnetic fields for bar magnets along with graphical representation	HS-PS3-5. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.	School Issued Chromebook Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	Labs: • Mapping Magnetic Fields Summative: • Test • Quizzes: Formative: • Bellringers • Homework	Early to mid May
NYS 4.3 Students can explain variations in wavelength and frequency in terms	Unit 10: Waves 1. Explain how force, velocity and acceleration change as an object vibrates	HS-PS4-1. Use mathematical representations to support a claim regarding relationships among the period,	School Issued Chromebook Teacher generated google slides notes Calculator	Labs: • Wave Characteristic Slinky Lab • Speed of Sound Lab	Mid May to June

of the source of the vibrations that produce them, e.g., molecules, electrons, and nuclear particles 4.3a An oscillating system produces waves. The nature of the system determines the type of wave	 Identify Amplitude Recognize the relationship between period and frequency 4. Calculate the period and frequency of an object in SHM 5. Calculate wave speed, frequency, and wavelength 	frequency, wavelength, and speed of waves traveling and transferring energy (amplitude, frequency) in various media. HS-PS4-2. Evaluate questions about the advantages of using a digital transmission and storage of information	School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	 Standing Waves Summative: Test Quizzes Formative: Bellringers Homework
produced.				
 4.3b Waves carry energy and information without transferring mass. This energy may be carried by pulses or periodic waves. 4.3c The model of a wave incorporates the characteristics of amplitude, wavelength,* 	 Sound Waves Explain how sound waves are produces Relate frequency to pitch Compare the speed of sound in various media Explain the Doppler effect and shift Explain resonance Explain sonic booms 	HS-PS4-4. Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.		

frequency*,			
period*, wave			
speed*, and	 Electromagnetic 		
phase.	Waves		
	8. Differentiate		
4.3d Mechanical	between		
waves	electromagnetic		
require a material	waves		
medium	o Radio,		
through which to	microwaves,		
travel.	infrared,		
	visible, UV, x-rays,		
4.3e Waves are	gamma and		
categorized	cosmetic waves		
by the direction in			
which	Light and		
particles in a	Reflection		
medium vibrate	1. Characteristics		
about an	of Light		
equilibrium	o Identify the		
position	components of the		
relative to the	electromagnetic		
direction of	spectrum		
propagation of the	o Calculate the		
wave,	frequency or		
such	wavelength of		
as transverse and	electromagnetic		
longitudinal	radiation		
waves.	2. Color and		
	Polarization		
4.3f Resonance	3. Refraction		
occurs	4. Reflection of		
when energy is	light		

r			
transferred to a system at its natural frequency.	o Law of reflection 5. Electromagnetic spectrum		
4.3g Electromagnetic radiation exhibits wave characteristics. Electromagnetic waves can propagate through a vacuum			
4.3 Explain variations in wavelength and frequency in terms of the source of the vibrations that produce them, e.g., molecules, electrons, and			

nuclear particles 4.3i When a wave moves from one medium into another, the wave may refract due to a change in speed. The angle of refraction (measured with respect to the normal) depends on the angle of incidence and the properties of the media (indices of refraction).* 4.3j The absolute index of refraction is inversely			
refraction is inversely proportional to the			
speed of a wave.*			
4.3k All frequencies of electromagnetic			

radiation travel at the same speed in a vacuum.*			